연구논문에서 표와 그림의 적절성 평가

김창수

연세의대 예방의학교실

EIC, Yonsei Medical Journal

IMRaD structure

- Introduction: why ask this research question?
- Methods: what did I do?
- Results: what did I find?
- Discussion: what might it mean?

Planning a draft paper

Section	Question to be answered	Purpose	with A4 paper, font size 10–12 and 1-5 line spacing
Introduction	Why did you start?	Summarise the context of your study and state the aims clearly	1 page
Methods	What did you do?	Give enough detail for the study to be repeated	2–3 pages
Results	What did you find?	Describe the study sample and use the data analyses to answer the aims	2–3 pages
Tables and figures	What do the results show?	Clarify the results	3–6 tables or figures
Discussion	What does it mean?	Interpret your findings in context of other literature and describe their potential impact on health care	2–3 pages
References	Who else has done important work in your field?	Cite the most relevant and most recent literature	20–35 references
Total document			12–20 pages

Expected length

IMRaD structure: Introduction

- Brief background for this audience
- 3-4 paragraphs only
- What's known/not known on research question
- Don't boast about how much you have read

The research question

- State it clearly in last paragraph of introduction
- State why the question matters

•독립변수, 종속변수, 대상인구의 명시가 있어야 한다.

간결하게 표현해야 한다.

구체적으로,

함축적으로,

연구주제를 정확하게,

•제목 작성시에는

•논문의 제목만으로도 논문의 내용을 알 수 있어야 한다

American Journal of Epidemiology Copyright © 2004 by the Johns Hopkins Bloomberg School of Public Health All rights reserved Vol. 159, No. 2 Printed in U.S.A. DOI: 10.1093/aje/kwh033

Hair-coloring Product Use and Risk of Non-Hodgkin's Lymphoma: A Populationbased Case-Control Study in Connecticut

Yawei Zhang¹, Theodore R. Holford¹, Brian Leaderer¹, Peter Boyle², Shelia Hoar Zahm³, Stuart Flynn⁴, Geovanni Tallini⁴, Patricia H. Owens¹, and Tongzhang Zheng¹

¹ Department of Epidemiology and Public Health, Yale School of Medicine, New Haven, CT.
 ² Department of Epidemiology and Biostatistics, Europe Institute of Oncology, Milan, Italy.
 ³ Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD.
 ⁴ Department of Pathology, Yale School of Medicine, New Haven, CT.

Received for publication April 24, 2003; accepted for publication July 31, 2003.

서 론(IMRAD)

- Brief background for this audience
- 3-4 paragraphs only
- What's known/not known on research question
- Don't boast about how much you have read

The research question

- State it clearly in last paragraph of introduction
- State why the question matters

연구방법(IMRAD)

•재현가능성이 있도록 정확하고 자세하게 기술

Describe PECO/PICO elements of the study:

- **P**: which patients, which population, what problem(s)?
- **I or E** : which intervention(s) or exposure(s)?
- **C** : which comparison group? Any randomization or stratific ation?
- **O**: what outcome(s) or endpoint(s)? Define primary and se condary outcome(s)

결 과 (IMRAD)

Statistical inference

- Report results fully & honestly, as pre-specified
- Report primary outcomes first
- Confidence intervals: main results
- Report essential summary statistics
- Leave out non-essential tables and figures

Text (story)

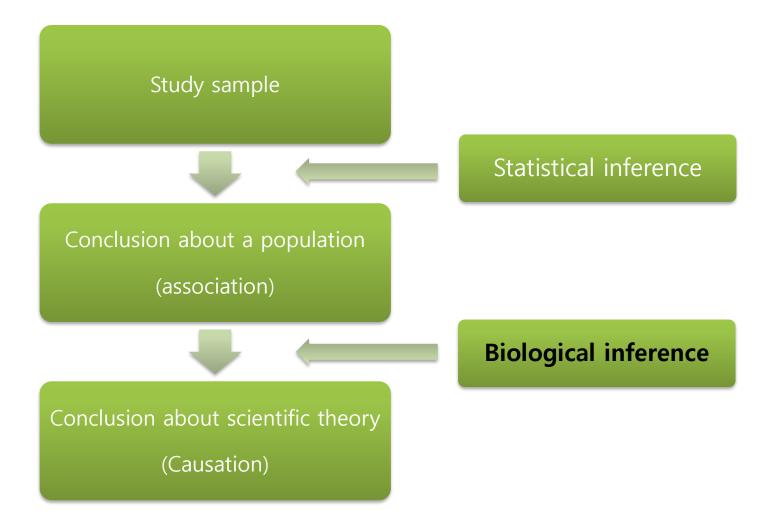
Tables (evidence)

Figures (highlights)

고 찰(IMRAD)

Biological inference: Causality

Don't simply repeat the introduction.

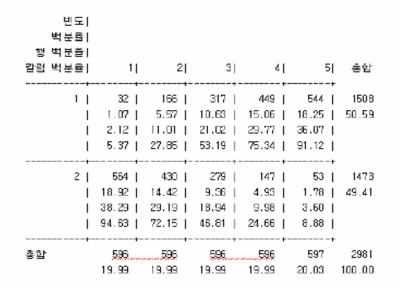

Include the following : Statement of principal findings

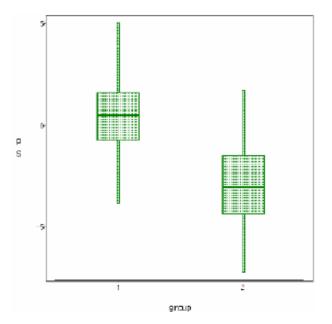
- Strengths & weaknesses of the study
- Strengths & weaknesses in relation to other studies & key differences
- Possible mechanisms & explanations for findings
- Potential implications for clinicians or policymakers
- Unanswered questions and future research

Tables and Figures

분석의 일관성 인과성 추론의 과정

Overview of the scientific method




표의 구성: Statistical inference

- 1 : Descriptive statistics
 - comparison of comparable group
- 2 : Confounder identification
- 3 : Independent effect or association
- 4 : Subgroup analysis, etc.,

Descriptive statistics: Table 1

- comparison of comparable group-

Summarizing Data: Reporting Data and Descriptive statistics

- Descriptive statistics: numerical summaries of collections of data
- The precision of observations and measurements
 - 67.837kg → 67.9 kg
- Percentages
 - Always give the numerators and denominators 25% (650/2598), 33% (30 of 90 cases), 12 of 16 cases (75%)
 - Sample size >100 : one decimal place
 - Sample size <100 : whole numbers</p>
 - Sample size <20 : actual number rather than %
 33% : ?

Summarizing Data: Categorical Data

Specify the denominators of rate, ratio, proportions, and percentages

Example)

Of the 25 tumors, only 5 were malignant.

- Ratio of malignant to nonmalignant tumor: 5 : 20
- **Proportion** of malignant to nonmalignant tumor: 5/25, 0.2
- Percentage of malignant tumor: 20%
- After 5 years of follow up on each patient, the tumor was malignant in 5 of the 25 patients, giving a 5-year recurrence rate of 20% (rate usually is associated with time factor)
- If continuous data have been separated by "cutpoints" into ordinal categories
 - cutpoints and the rationale for choosing them

Summarizing Data: Continuous Data

- Provide appropriate measures of central tendency and dispersion when summarizing data that have a continuous distribution
 - Measure of central tendency: mean, median
 - Measure of dispersion: standard deviation, range, interquartile range
- Do not summarize continuous data with the mean and the standard error of the mean (SEM)
 - SEM : measure of precision for an estimated population mean
 - SD : the variability of the actual data

Sample presentations (I)

- Use the mean and SD only when describing approximately normally distributed data
- Mean values : one decimal place
- Standard deviations : two decimal place
- Data described with a standard deviation that exceeds one-half the mean are non-normally distributed : median, range or interquartile range

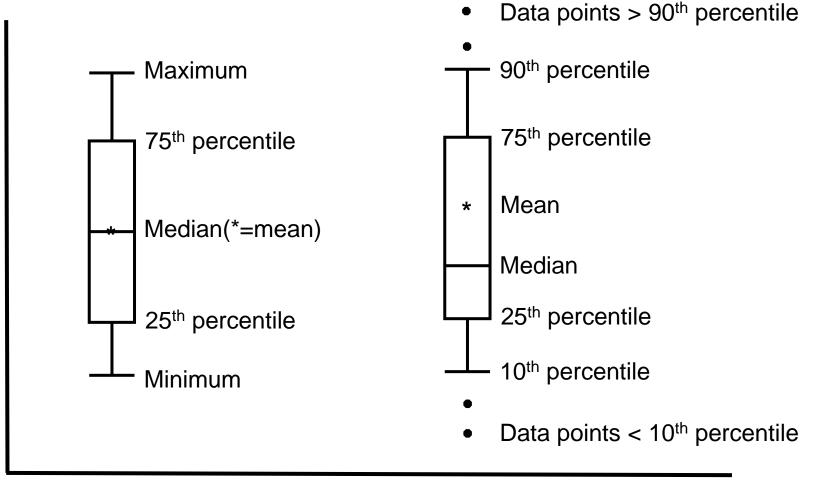
Example) 45±25 mg/dL

95% within about 2SD above and below the mean,

45-(25+25)=-5, 45+(25+25)=95: not normally distributed

Sample presentations (II)

"Antibody titers ranged from 25 to 347 ng/mL and had a mean (SD) of 110 ng/mL (43 ng/mL)"


If the data are approximately normally distributed, they are appropriately described with the mean and standard deviation

"Antibody titers ranged from 25 to 347 ng/mL and had a median (interquratile range) of 110 ng/mL (61 to 159 ng/mL)"

If the data are markedly normally distributed, they are appropriately described with the median and interquartile range

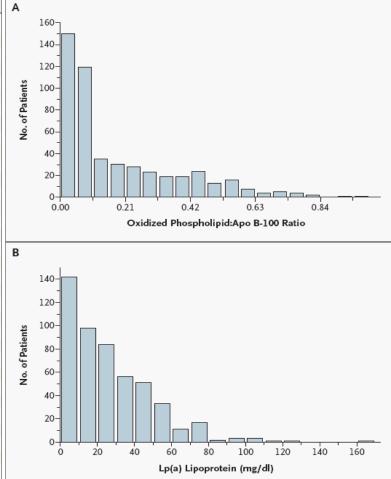
* Most biological characteristics are not normally distributed

Sample presentations (III)

Normally distributed

Non-normally distributed

Postthyroidectomy obesity in a Korean population: does the extent of surgery matter. *Ann Surg Treat Res.* 2019


Variable	Total (n = 227)	Lobectomy (n = 103)	Total thyroidectomy (n = 124)	P-value
Age (yr)	46.0 ± 11.0	43.4 ± 9.7	48.2 ± 11.5	0.001*
Female sex	188 (82.8)	81 (78.6)	107 (86.3)	0.128
Duration (mo)	23.9 ± 16.7	18.4 ± 14.6	28.3 ± 17.0	< 0.001*
Menopause (n/female)	63/188	19	44	0.004*
IPAQ	2,566.6 ± 2,734.5	$2,562.5 \pm 2,780.2$	2,570.1 ± 2,707.2	0.983
Inactivity, <600 IPAQ	50 (22.0)	22 (21.4)	28 (22.6)	0.825
Smoking	11 (4.8)	8 (7.8)	3 (2.4)	0.071
Heavy alcohol consumption	19 (8.4)	12 (11.7)	7 (5.6)	0.104
At surgery				
Weight (kg)	62.3 ± 11.9	62.1 ± 12.3	62.4 ± 11.6	0.839
Height (cm)	160.9 ± 7.7	162.4 ± 8.6	159.7 ± 6.8	0.010
BMI (kg/m ²)	24.0 ± 3.6	23.5 ± 3.7	24.4 ± 3.5	0.074
Obesity ^{a)}	88 (38.8)	55 (32.0)	55 (44.4)	0.058
TSH (µIU/mL)	1.92 ± 1.20	1.77 ± 0.97	2.04 ± 1.35	0.090
At follow-up				
Weight (kg)	62.6 ± 12.1	62.7 ± 12.7	62.5 ± 11.7	0.908
BMI (kg/m ²)	24.1 ± 3.6	23.7 ± 3.7	24.4 ± 3.5	0.149
Obesity ^{a)}	90 (39.6)	34 (33.0)	56 (45.2)	0.062
TSH (µIU/mL)	1.02 ± 1.76	1.82 ± 1.86	0.35 ± 1.34	< 0.001*
Weight change (kg)	0.36 ± 3.57	0.64 ± 3.56	0.13 ± 3.58	0.284
BMI change (g/m ²)	0.10 ± 1.42	0.18 ± 1.44	0.03 ± 1.41	0.417

Variables	Total		Background level		Occupational exposure		Environmental exposure	
	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls
	n = 179 (%)	n = 895 (%)	n = 3 (%)	n = 68 (%)	n = 77 (%)	n = 146 (%)	n = 161 (%)	n = 810 (%)
Age (mean ± SD)	78.94 ± 8.43	78.88 ± 8.43	78.00 ± 4.00	75.94 ± 9.66	80.54 ± 7.76	80.89 ± 8.89	79.11 ± 7.75	79.19 ± 8.31
Gender								
Male	151 (20.0)	755 (80.0)	3 (5.0)	57 (95)	73 (34.4)	139 (65.6)	113 (16.3)	681 (83.7)
Female	28 (20.0)	140 (80.0)	0 (0.0)	11 (100)	4 (36.4)	7 (63.6)	28 (17.8)	129 (82.2)
Education level								
< High school	60 (8.6)	635 (91.4)	0 (0.0)	38 (100.0)	31 (21.4)	114 (78.6)	56 (8.8)	582 (91.2)
High school	8 (8.6)	85 (91.4)	0 (0.0)	15 (100.0)	2 (28.6)	5 (71.4)	8 (10.5)	68 (89.5)
> High school	2 (5.6)	34 (94.4)	0 (0.0)	12 (100.0)	0 (0.0)	1 (100.0)	2 (8.3)	22 (91.7)
Unknown	109 (43.6)	141 (56.4)	3 (50.0)	3 (50.0)	44 (62.9)	26 (37.1)	95 (40.8)	138 (59.2)
Smoking status								
Never smoked	44 (11.1)	351 (88.9)	0 (0.0)	26 (100.0)	13 (22.4)	45 (77.6)	43 (11.8)	320 (88.2)
Past smoker	70 (16.7)	350 (83.3)	1 (3.2)	30 (96.8)	36 (39.1)	56 (60.9)	62 (16.5)	314 (83.5)
Current smoker	65 (25.1)	194 (74.9)	2 (14.3)	12 (85.7)	28 (38.4)	45 (61.6)	56 (24.1)	176 (75.9)
Pack-year (mean ± SD)	23.36 ± 22.89	20.88 ± 21.83	24.67 ± 9.50	17.71 ± 18.44	29.68 ± 26.12	24.00 ± 23.05	21.86 ± 22.37	21.11 ± 22.11

Table 1. Baseline Characteristics and Lipid Levels in the Study Group.*				
Variable	Value			
Age — yr	60.1±10.9			
Female sex — no. (%)	193 (38)			
White race — no. (%)†	490 (97)			
Hypertension — no. (%)	232 (46)			
Current smoker — no. (%)	40 (8)			
Previous myocardial infarction — no. (%)	77 (15)			
Congestive heart failure — no. (%)	59 (12)			
Family history of coronary artery disease — no. (%)	128 (25)			
Hypercholesterolemia — no. (%)	286 (57)			
Statin therapy — no. (%)	142 (28)			
Serum creatinine level — mg/dl				
Median	1.1			
Interquartile range	1.0-1.3			
Indications for angiography — no. (%):				
Myocardial infarction within 6 wk before enrollment	41 (8)			
Unstable angina	147 (29)			
Dyspnea on exertion	137 (27)			
Ischemia on nuclear stress test	125 (25)			
Other	166 (33)			
Lipid levels — mg/dl				
Total cholesterol	207±45			
LDL cholesterol	124±37			
HDL cholesterol	48±15			
Triglycerides				
Median	153			
Interquartile range	112-207			
Apolipoprotein B-100	98±21			
Lp(a) lipoprotein				
Median	21.1			
Interquartile range	8.8–39.6			
C-reactive protein — mg/liter				
Median	2.9			
Interquartile range	1.2-6.7			

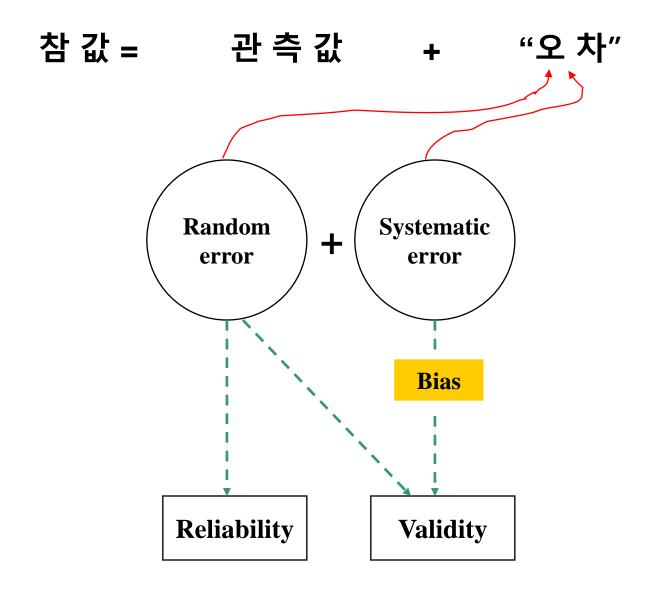
* The study group was made up of 504 patients. Plus–minus values are means ±SD. LDL denotes low-density lipoprotein, and HDL high-density lipoprotein. † Race was self-reported.

‡ Patients could have more than one indication for angiography.

Figure 1. Frequency Distribution of the Oxidized Phospholipid:Apo B-100 Ratio (Panel A) and Lp(a) Lipoprotein Levels (Panel B).

Oxidized phospholipid:apo B-100 ratio denotes the oxidized phospholipid content per particle of apolipoprotein B-100.

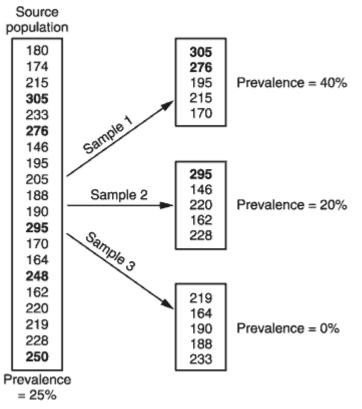
표의 구성: Statistical inference


- 1 : Descriptive statistics
 - comparison of comparable group
- 2 : Confounder identification
- 3 : Confounder adjustment
 - Independent effect or association

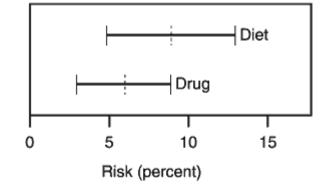
And/or Subgroup analysis, etc.,

Table 3. Univariate and Multivariate Cox Regression Analyses of Histopathological Risk Factors Based on Tumor Specimens from Radical Prostatectomy.

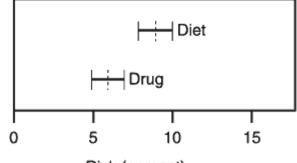
End Point and Risk Factor	No. of Men	No. of Events	Relative Risk with Adjustment for Age Group (95% CI)*	Relative Risk with Adjustment for Age Group and Additional Factors (95% Cl)†
Distant metastasis				
Margins				
Negative	184	29	Reference	Reference
Positive	99	32	2.73 (1.63-4.57)	1.26 (0.73-2.20)
Extracapsular extension				
Absent	151	13	Reference	Reference
Present	132	47	6.59 (3.54–12.27)	4.50 (2.34-8.64)
Gleason score of prostatectomy specimen				
3–6	88	4	Reference	Reference
7	157	37	6.27 (2.23–17.59)	3.10 (1.05-9.11)
8 or 9	38	20	17.82 (6.08-52.28)	9.44 (3.09-28.84)
Death from prostate cancer				
Margins				
Negative	184	24	Reference	Reference
Positive	99	24	2.55 (1.42-4.56)	1.16 (0.62–2.15)
Extracapsular extension				
Absent	151	9	Reference	Reference
Present	132	38	7.61 (3.66–15.84)	5.21 (2.42–11.22)
Gleason score of prostatectomy specimen				
3–6	88	3	Reference	Reference
3+4	87	5	1.91 (0.46-7.99)	0.99 (0.23-4.33)
4+3	70	21	11.78 (3.51–39.55)	5.73 (1.59–20.67)
8 or 9	38	19	20.06 (5.93–67.91)	10.63 (3.03–37.30)


* The model was adjusted for age group (<65 vs. ≥65 years). † The model was adjusted for age group (<65 vs. ≥65 years), PSA level, margins, capsular extension, and Gleason score.

Random Error


- The defining characteristic of random error is that it is due to "chance" and, as such, is unpredictable
 - Ex) tossing a coin 100 times where the aim is to test the hypothesis that the coin is "fair"
 - to completely eliminate random error → toss the coin an "infinite" number of times
- Clinical or Epidemiologic studies: randomly sampled from a "population."
 - the null hypothesis is rejected when it is true: type I error (α)
 - the null hypothesis is not rejected when it is false: type II error (β)
 - $\alpha \text{ and } \beta = 0 ?$
 - For a given sample size there is a tradeoff between type I error and type II error

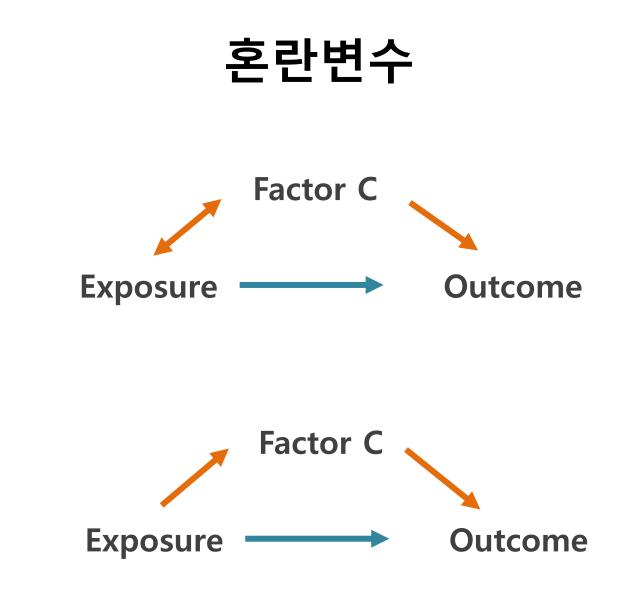
Random Error: 표본 크기, 95% CI

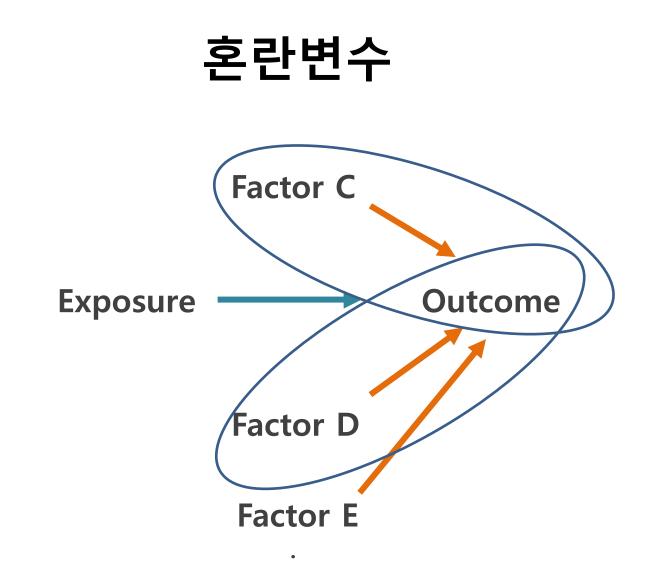


Copyright ©2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Study A (200 subjects)

Study B (2000 subjects)


Risk (percent)


Copyright ©2006 by The McGraw-Hill Companies, Inc. All rights reserved.

 $95\% CI = X \pm 1.96xSE$

Systematic error

- Systematic error: reproducible
- Result of problems having to do with study methodology
 - the study sample could be chosen improperly
 - the questionnaire could be invalid
 - the statistical analysis could be faulty
- Bias, Confounding

•

Table 2. Univariate and multivariate analysis of predictors a ssociated with postthyroidectomy obesity (BMI $\ge 25 \text{ kg/m}^2$)

	Univariate	Multivariate analysis			
Variable	analysis P-value	OR (95% CI)	P-value		
Age (yr)	0.626				
Female sex	0.658				
Duration (mo)	0.039	1.032 (1.002-1.063)	0.035		
Menopause state	0.615				
IPAQ	0.782				
Smoking	0.369				
Alcohol consumption	0.059	6.492 (1.250–33.712)	0.026		
Preopeative BMI (kg/m ²)	< 0.001	3.945 (2.646-5.883)	<0.001		
Total thyroidectomy	0.920				
Preoperative TSH (µIU/mL)	0.697				
Postoperative TSH (µIU/mL)	0.346				

Variables with P < 0.10 in the univariate analysis were included in the multivariate analysis. BMI, body mass index; OR, odds ratio; CI, confidence interval; IPAQ, International Physical Activit y Questionnaire.

표와 그림의 적절성

• Text : story

Tables or Figures

✓ Evidence: causality, association✓ Figure: Highlights

감사합니다.